Xabier Sáez de Cámara ikasleak BIKAIN CUM LAUDE kalifikazioa lortu zuen

Atzealdea

Xabier Sáez de Cámara ikasleak BIKAIN CUM LAUDE kalifikazioa lortu zuen

TESIA

Xabier Sáez de Cámara ikasleak BIKAIN CUM LAUDE kalifikazioa lortu zuen

2023·11·01

$titulo.getData()


  • Tesi titulua: Federated Learning Approaches Towards Intrusion Detection in Industrial Internet of Things

Epaimahaia:

  • Lehendakaritza: Pedro García Teodoro (Universidad de Granada)
  • Bokala: Gregorio Martínez Pérez (Universidad de Murcia)
  • Bokala: Víctor Abraham Villagra González (Universidad Politécnica de Madrid)
  • Bokala: María Cristina Alcaraz Tello (Universidad de Málaga)
  • Idazkaritza: Iñaki Garitano Garitano (Mondragon Unibertsitatea)

Laburpena:

Intrusioen detekzioak sistema edo sare informatiko batek baimenik gabeko sarbideak izan dituen edo erasopean dagoen bermatzeko metodoak garatzea du helburu. Teknologia aurreratu ahala, hainbat intrusio detekzio sistema mota ezberdin sortu dira mehatxuak antzemateko erabiltzen den teknologiaren arabera edo babestu nahi diren gailuen edo inguruaren arabera. Tesi hau machine learning (ML) tekniketan oinarrituta dauden intrusio detekzio sistemak Gauzen Internet (IoT, Internet of Things) ingurua babesteko arloaren barruan kokatzen da. Hain zuzen ere, IoTaren abantailak eta erabilera handia izan arren, hainbat segurtasun ahultasunen eta praktika txarren ondorioz, IoT gailuen aurkako hainbat malware ugaritu dira.

Zehazki, tesi honetan federated learning (FL) teknikak aztertuko ditugu, ML modeloak entrenatzeko teknika berri bat sistema banatuetarako bereziki egokitua, hala nola IoT ingurunerako. Laburki, FL-en helburua ML modelo bat kolaboratiboki entrenatzea da hainbat gailuren (bezeroak FL prozesuan) artean. FL-en bereizgarritasun nagusiena entrenatzeko datu guztiak lokalki bezero bakoitzean mantentzen direla da, horri esker, beste ohiko tekniketan (hodeiko edo perimetroko konputazioan) sortzen diren datuen pribatutuasun, eskuragarritasun eta komunikazio kostuen erronkei aurre egin ahal zaie FL-ari esker. Nahiz eta FL-ek arrakasta ona izan hainbat kasu praktikoetan, esate baterako mugikorren teklatuetan hurrengo hitzak aurresateko edo ahotsaren azterketarako, IoT inguruan intrusio detekziorako ez da hain sakonki ikertu. Halaber, arlo honek dituen hainbat erronka eta hutsuneak tesi honetarako motibazio gisa erabili ditugu; besteak beste, FL esperimentuetarako egokiak diren IoT segurtasun datu publikoen falta, datuen etiketatzearen kostua, IoT ingurunearen heterogeneotasun handia dela eta sortutako arazoak FL-ko modeloen entrenamenduan eta FL inguruan entrenatutako ML modeloei azalgarritasuna emateko beharra. Azken puntu hau funtsezkoa da segurtasun analistek ML tekniketan konfiantza hobetzeko.

Aipatutako erronkak arlo honetako bakarrak izan ez arren, tesi honetan horiek izan dira bereziki landu ditugunak. Bertatik, hiru ekarpen nagusi aurkeztu ditugu. Lehenik, saiakuntza-banku emulatu bat aurkezten dugu IoT segurtasun datu-multzoak sortzeko eta FL-ekin esperimentatzeko modu erreproduzible, moldagarri eta erraz banatzeko moduan. Saiakuntza-bankuak hainbat mehatxu-aktore emulatzen ditu malware errealak erabiliz. Ondoren, FL arkitektura bat aurkezten dugu anomalien detekziorako gainbegiratu-gabeko modeloak entrenatzeko. IoT ingurunearen heterogeneotasun handiak eragindako arazoei aurre egiteko, FL prozesuan integratutako bezeroen taldekatzeko algoritmo bat proposatzen dugu. Azkenik, aldez aurretik entrenatutako anomalia detekziorako modeloei azalgarritasuna aurkezteko metodologia bat proposatzen dugu. Horretarako, FL teknikak ere erabiltzen ditugu federatutako sareko bezero guztietan antzemandako anomaliak automatikoki deskribatzeko, taldekatzeko, laburtzeko eta auto-etiketatzeko.